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On the Computation of the Complete
Spectral Green’s Dyadic for Layered
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Abstract—This paper shows how to obtain a systematic al- can first be carried out in the spectral domain, where it
gorithm for computing the complete spectral Green's dyadic s possible to obtain closed-form expressions for isotropic
(CSGD) of multilayered bianisotropic planar structures. The g1 ctyres, and then transforming these to the spatial domain

top and bottom boundary conditions of the structures can be 111, If anisotropic | t th tati f 1h
either electric/magnetic walls or any kind of boundary condition [11]. If anisotropic layers are present, the computation of the

suitable for implementation by means of impedance/admittance SPectral Green’s dyadic becomes more involved and, in the
dyadics. The method presented here makes use of the fact thatgeneral bianisotropic case, only a numerical approach can
the sheets of normally directed surface electric-/magnetic-current pe resorted to. In many problems—e.g., when computing the
density can be transformed into equivalent sheets of transverse ., acteristics of planar circuits—we only need to obtain the
electric-/magnetic-current density. Once the problem has been ¢ G 's dvadi hich relat i d
reduced to deal only with transverse current densities, the equiv- ransvers reens dyadic, which re a_ €s current sources E_in
alent boundary method (EBM) is extended to obtain the CSGD. field components both parallel to the interfaces of the medium
This method has been applied to compute the radiation char- (the plane of these interfaces will be termé@nsversg
acteristics of arbitrarily oriented dipoles embedded in different  Numerical procedures for the computation of the transverse
layered structures. spectral Green’s dyadic (TSGD) in layered anisotropic media
Index Terms—Arbitrarily oriented dipoles, bianisotropic lay- are reported, e.g., in [12]-[15]. Nevertheless, there are also

ered media, dyadic Green’s function. manyplanar structures where the presence of feeding elements
breaks the planar condition, making the determination of the
|. INTRODUCTION complete spectral Green’s dyadic (CSGD) unavoidable [16].

. o One possible way to compute this CSGD is to transform
T HE analysis of the electromagnetic field created by,rmaly directed components of the sources (either electric
sources or scattered by metallic patches or stips magnetic) into equivalent sheets of transverse-surface cur-
embedded in stratified planar media finds application .+ gensity [17]. This procedure enables the application of
many different fields such as geophysical investigationgn, of the methods involving only transverse components
remote sensing, op_toelectror_ucs, microwave circuitry, anZ]—[ls] to the direct computation of the CSGD. Both the
antennas. Often, anisotropy is unavoidable in one or mQ{8sformations and the general scheme to find the equivalent
layers of the planar microwave circuits, but in other caseg, rces when the sheets of normally directed current are
anisotropic and/or chiral layers are included in planar Circ”ié?nbedded in isotropic media can be found in [17]. In this
to improve performance [1], [2]. Magnetic anisotropy cafaner we will extend this scheme to obtain general expres-
b_e found n ferrites or may be mduceq 'by means of &ons for the corresponding transformations when normally
biasing static magnetic field, thus providing an extemgjocteq electric/magnetic currents are embedded in general
parameter to control some characteristics of the circuit and'fﬂfanisotropic media
the radiation properties of planar antennas [3}-[5]. AlSO, nce the above transformations are performed, the equiv-
composite chiral-ferrite media [6] and uniaxial bianisotropi5|ent boundary method (EBM) [14], [15] may be chosen to
media [7] have been proposed to exploit the electromagnefiGy,nte the CSGD, although other suitable choices are also
properties of these matenals. Both the isotropic and all _”ﬂ)%ssible (e.g., [12], [13]). The EBM, proposed by the authors
aboye cases are pa_\rn(_:ular cases Of_ the most genera_\l I'_r\ﬁa[14] and [15], is a different approach for systematically
medium, i.e., the b|a_1n|sotrop|c medium whose CO”S“t“t'V&)mputing the TSGD in striplines and/or patches embedded
parameters are dyadics. _ in layered bianisotropic media and provides an straightforward
_The rigorous analysis of planar structures in layered Mg, ithm[15] to obtain the transverse components of the elec-
dia by the method of moments requires the computatiq; fie|4s when transverse-surface electric currents are present
of the dyadic Green's function [8]-[11]. This computationy; some of the interfaces of the layered linear bianisotropic
Manuscript received May 15, 1997; revised November 21, 1997. This woFPEd'Um- As was discussed in [15], S(?me of the feqtures of
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the complete algorithm; and 3) the well-conditioned nature of T
the algorithm, which provides satisfactory numerical behaviol o _,f ______
for large values of the transverse wave vector (the wave-vectc

components parallel to the interfaces) and high numbers ¢ LTS

layers [18]. 1 - E 7
Since, to the authors’ knowledge, there has not been #=& Tt 1t1 'f|T AARRLRE 'ff 1ttrt < |

method reported to compute the complete electric and mag — — @ J l"e ey —y

netic spectral Green’s dyadic for layered bianisotropic media BTl "'n .

this paper will present a systematic and general scheme v = ==="== == == ===

compute the CSGD in bianisotropic media based, first, &iw. 1. Sheet of arrayed vertical electric dipoles inside an homogeneous
the transformation of sheets of normally directed currefgnisotropic layer.

into equivalent transverse current sheets and, second, on

the application of the EBM algorithms. As is well knownEBM [15] is employed to give the outlines of the systematic

obtaining this CSGD is equivalent to calculate the radiatiatbomputation of the complete Green’s dyadic in the spectral
characteristics of an arbitrarily oriented Hertzian dipole [19Homain. Finally, and as an example of application, Section II-
This computation was accomplished in [20] for an isotropiC shows how to obtain the spectral Green’s dyadic relating the
single-layer planar structure via a TE and TM modal decoralectric field and current in a layered grounded bianisotropic
position and in [13] and [21] for layered anisotropic structurasedium.

by a transverse transition matrix method. In this paper, and

as an application of our method, we will show some results Computation of the Equivalent-Current Sheets

of the radiation characteristics of arbitrarily oriented Hertzian

dipoles embedded in complex layered media, Starting from the method developed in [17, pp. 17-23] for

the isotropic case, we will obtain the transverse electric- and/or
magnetic-current sheets equivalent to a planar sheet of arrayed
vertical electric dipoles inside a general bianisotropic layer

) i ésee Fig. 1). Specifically, we will consider a normally directed
The extension of any of the methods proposed in [12]-[15],/face electric-current sheet density given by
for the computation of the fields produced by three-

dimensional (3-D) sources embedded in a general bianisotropidns(%; ka: ky) = Jo,ns6(z — 2/) e 7Y e7%T M0 (1)
layered medium creates some difficulties since these metho S

ere?’ is the z-coordinate of the current shedt, andk,
were originally developed to deal only with transverse.
re the transverse components of the wave vectornaedhe
surface electric currents and transverse fields. It should

) : . I h f he foll
noted that the latter case is relatively simple because Sﬁmt vector perpendicular to the interfaces (in the following,

e
transverse-surface electric-current densities can be treate

Il. ANALYSIS

hé _exponentials will be suppressed). This sheet of normally
discontinuities of the transverse magnetic fields, and thdlrected current density is placed in a medium characterized

the following bianisotropic and linear constitutive relations
the problem can be completely solved in terms of juig 9 P

the transverse components. Nevertheless, we can still t
advantage of the transverse nature of the above methods by D =co,  E+ lgr ‘H )
splitting the contribution of the 3-D sources into transverse c

and normal contributions. Moreover, following a method
similar to that reported in [17] for the isotropic case, it
will be shown that the normally directed currents embeddegherec = 1/, /cofio, ¢ and,. are the relative dyadic permit-

in bianisotropic layers can be transformed (in the specti@lity and permeability, and, and7, are the cross-coupling
domain) into equivalent sheets of transverse magnetic- andd9adics accounting for the bianisotropy of the substrate.
electric-current densities by deriving the field singularities Following [17], we can consider the surface-density current
at the location of the dipole sources. In this way, once thig) as the limiting case of a finite sheet of normally directed
transverse fields produced by both the actual and equival@Btume-density current,, = Jo.ns/h Of thicknessh as h
transverse sources have been obtained, the normal componggifoaches zero (see Fig. 2). Owing to the charge-conservation

of the fields can be algebraically computed in terms of thginciple, a surface-free charge density given by
transverse components. The computation of the transverse J J
n _ “0ns

fields produced by equivalent transverse magnetic sources dps = — = —

can be accomplished following the algorithms reported in ju  gwh

[12]-[15] for the electric case after applying the dualitwill appear at both bounds of this current sheet.
relationships between electric and magnetic fields [22, pp.Since in the limit ash approaches zero some of the fields
98-100]. The same duality relations can also be used to obtaiside the source region will approach infinity, these fields
the fields of original elementary magnetic-current sources. Thdl determine the field discontinuities across the surface on
remainder of this section is organized as follows. Section I[I-#hich the current sheet (1) is placed. Once these predominant
will show how to obtain the equivalent transverse sources fiélds have been obtained, the sheet of normally directed
a 3-D source inside a bianisotropic layer. In Section 1I-B, th&urface current density will be reduced to eguivalentsheet

1
B = pofi, - H+ =7, - E €)

(4)
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h-E={1 h-H=0 FLT.E fields given in (7)-(11), we obtain
Y
d 2 o R b e ool Syt 2
¢ . lin(hE. 2 = hE. 1)+ [ (E7 —Bf)-0
h—-0 4 iE-‘h l H/h TR TR - 9
¥ K = jw / }lilrb(hBt)(ﬁ x dl) (13)
P e P o bt ey A e 1 e
P,
hE=0 h-H=D Erfd o ¥ where E. , and E. ; are thez-components of the electric
Fig. 2. Finite vertical current sheet inside an homogeneous bianisotro&@ldS at pOSItIOI’]S_ Or?e anc_l two in Fig. 1 aﬁlj and E?—.the
layer. This sheet turns into the dipole sheet of Fig. Tias 0. transverse electric fields just above and below the interface

z = Z'. From the above equation, in the limit as points one

of transverse magnetic and/or electric surface current dendih d two coalesceft; » — b1 — dE. = V,E. - dI), we can

giving the same field discontinuities [17, p. 23]. witte

As we are interested only in the behavior of the fields in ,__ . L. .
the source region of the normally directed current sheet in the(Et ~E)=V. [;lbli%(hEZ)} +wn x ;lblgb(hBt) (14)
limit & — 0, these predominant fields are obtained neglecting
both variations inside this sheet and the external fields (whitth V¢ being the transverse gradient operator. Now taking
should remain finite even in the limit — 0 [17]). Then, from into account the transverse dependence of the fields [see (1)],
the continuity conditions at the upper and lower surface charfe?) can be written as
layers of Fig. 2, it is deduced that inside the source region
ash — 0. hE;, — 0, hH; — 0 (subscriptt stands for the
transverse part of the corresponding vectors) amgl — 0. R R
In the same way, the-component of the displacement vecto?VNere ke = k.x + k.z.
must satisfyhD. — —hp,, with p, given by (4). Finally, from T_h(_arfafort_a, the dlscontmwty produced E, by the sheets
hB. — 0, hD. — —hp, and the constitutive relations (2) anoOf mﬁm?e fields (7)—(1;) is equwalent to a sheet of surface
(3), in the limit ash approaches zero, the following equation§'@gnetic-current densit¥IZ? given by
for £, and H, in the bianisotropic case are obtained:

(Ef —EN) =—j lim (hE)k; + jwt x lim (hB;) (15)

(Ef —Ef) =M x i (16)
}liH(l)(—hpS) =€, }lilrb(hEZ) + & ilil% (hH,) (5) M = —j }lilrb(hEZ)(kt X R) — jw }lilrb(hBt). a7)
=n.. li FE. .. 1 H.). . .
0 =1. hlgb(h =)t s hli%(h - (6) Similarly, we find that
These equations, together with (4) atieh),_o(hJ,) = (Hy -H})=Jx i (18)
Jo, ns, provide the following direct expressions for the dom- °
inant fields: where J¢¢ is an equivalent sheet of surface electric-current
Jo. s density given by
lim (hD,) = — " (7)
f0 Jw 3 = —j lim(hH.)(k; x fi) — jw lim(kDy).  (19)
. 1 P2 Jo ns h—0 h—0
lim (hE,) =—— ————— (8)
h=0 1Jw CZZ“Z; — §aae Explicit expressions for the above equivalent magnetic and
lim (hH.) = — _ "kzdOns (9) electric currents can be obtained after substituting (8)—(11)
h._)O 1w Crzlbzz — £ZAZT]ZZ X into (17) and (19)
lim (hD¢) = lim (hE.)(€2-X + €,23) From relations (7)—(19), it is apparent that the fields pro-
+ lm (A H) (EaaX + £y2F) (10) duced by a sheet of arbitrarily directed electric surface current

density
lim (hB,) = ]lilrb(hEz)(nmf( +1y-¥)

1.—0 N ik —ikem
~ A JS Z;kx,lﬂ =J 562{—2 e IRY g IR 20
+ lim (WH) (e X 4 1y29), - (12) ( v) =J0,:6(z = ) (20)
~ ~ . i with amplitudeJo,s (Jo7S = J07 ts + J07 nsfl, with JO,ns =
wherex andy are, respectively, the unit vectors along the Jo,, - ) are the same than those obtained from the following

and y-directions. _ _ equivalentsheets of surface electric and magnetic currents at
If we now proceed along the treatment given in [17, pp. — /-

21-23], starting from
I =305+ (21)
j{E -dl = —jw / B-dS (12) M/, = M (22)

making use of the integration contour shown in Fig. 1 anghereJ¢? and M¢? are given by (17) and (19).
taking into account the discontinuity produced in the externallt is interesting to note that for the nonchiral case (when
(finite) fields of the current sheet shown in Fig. 1 by the infinité = 0 and7 = 0), the equivalent surface current sheets can
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be expressed as Air Interface
X y,2Y — 7 =M
ng = _Cazx—i_cy’éy JO, ns (23)
ez, z
J ns A ——
M = 227 g, x A (24) — 7
s €r i=F
These latter results coincide with those obtained by Tsalame! —_—
gas [21, eq. (17)] following a quite different method. i=5+1
The corresponding expressions for the equivalent-Surfatz=z'|as s iss oo o sod fond b i s fh Fadd poaprssd. =5
current sheets of an arbitrarily oriented magnetic source simile J, a"a"" :
to (20) can be obtained from the above equations after applyir =31
the duality relations [22, pp. 98-100]. —
et =2
Ep i 50 7
B. Computation of Fields: Outline of the General Procedure E R T ' =1
Once the transformation of the original electric-current x & Ground Plane y

sheet (20) into equivalent electric and magnetic transverse

current sheets has been performed, the fields can be compt!ﬁ@cﬁ-_ Arbitrarily oriented phased dipole sheet inside a multilayered bian-

following some of the known methods for obtaining thé&S°ToPic grounded structure.

TSGD [12]-[15]. Since the explicit and detailed description

of a general algorithm to compute the fields would be rathgrounded medium as that shown in Fig. 3. We will suppose

cumbersome, in this section, we will only give an outlinghat the bottom interface of the structure is an electric wall

of the general procedure. As was mentioned above, amamgd that the upper interface bounds to free space, although

the possible methods for obtaining the TSGD starting frothe procedure would work equivalently with other boundary

transverse sources as defined in (21) and (22), the EBM withnditions. The source interface € z’) will be denoted by

be used in the following. subscriptS (uppercase) and the interface where the fields are
Although the direct application of the EBM algorithms into be calculated by subscrigf. According to the scheme

[14] and/or [15] only provides the transverse electric fieldhown in the above subsection, the transverse Bl can

E, produced by the sourc&, in (21), theH, field created be written as

by the magnetic sourc®I, (22) can be readily obtained = e ~ e

making use of the duality relations [22] together with the E.r=Ggrs (Jo,4s+ I+ Gry -MT  (25)

corresponding dual-boundary conditions (for instance, electiithereJg .5, J¢7, andM¢? are given by (17), (19), and (21),

wall — magnetic wall and vice versa). If we now wereandGpg;, G ) are the transverse spectral dyadics relating the

interested in computing the transverse electric figld this transverse electric field to the electric and magnetic sources,

can be readily obtained from the valuesl®f at two different respectively.

levels inside each layer (for example, at the upper and lowerThe transverse Green's dyad(&; can be obtained by

interfaces of each layer). Finally, the total electric and/ar direct application of the EBM algorithm, as presented in

magnetic field created by both equivalent sources (21) afib], although, for completeness, an outline of the method

(22) is obtained by superposition. for this particular configuration is provided in the Appendix.
After the expressions to compute the transverse fields pMhe computation of theGgj, transverse Green's dyadic

duced by an electric-current source (20) have been obtainedn be carried out by starting from the transverse electric

the duality relations can again be used to obtain the transveGeen’s dyadic of the dual configuratio?,. This dual

fields produced by a magnetic-current source of a similaonfiguration results from replacing the lower electric wall

type to (20). The remaininds. and H. fields can finally be by a lower magnetic wall, the free-space impedance by its

computed from the relations between theseomponents and dual impedance, and each layer constitutive tensors by their

E;, H,. These relations are algebraic in the spectral domajnals. The dual electric Green’s dyadic actually provides the

and are obtained from (2), (3), and the Maxwell equationeansverse magnetic fiel#}”; created by the equivalent

in each particular case (explicit expressions for the normauyagnetic source (17) according M}/, = G2, - M<? or

directed fields can be found, for example, in [24]). Obviouslhgqyivalently, G2, = Guu) ’

each element of the CSGD can now be obtained as the relation ’ -

between the corresponding components of fields and sources. H), = Gyy - ML (26)

) o The transverse electric field created by the equivalent magnetic
C. Example: Computation of the Transverse Electric Field ¢, rce (17) at the field interfacEM

. ; + 7 can be computed
Created by an Electric-Current Source Inside a by making use of the uniqueness theorem for linear media,
Layered Bianisotropic Grounded Medium

which ensures that all the field components inside a region
As an example, we will explicitly compute the transverswithout sources are determined by the tangential components

electric field E, produced by an arbitrarily oriented electric-of the magnetic field on the boundaries. In particular, we

current sheet as in (20) embedded in a layered bianisotropan determine the transverse electric field at the interface
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r, E{YF from the transverse magnetic field at this interfact

and at any other interface, provided that there are no sourc LT ] i

between them. In this specific configuration, we will choos: %1 gy H P

the interfaceF’ — 1 as the other reference interface (althougt } |_4f_—|—_~:§;" ) |
ER ¥ PR

other choices are possible) and then we can write
H)'p = Gy - MS7 (27)

OnceH,. andH,._, have been calculated, we can obtair
EM,. from

<E£fp> _ <[P11]F [PIQ]F> . <E£4F1> o8 = \Aj#f Y

HYp [Pa1]r  [Po2]r HY.

Magnilude
-
o

."'-\.l-ll"
i

B (degress)

where the[P; ;]| r are the (2x 2) submatrices of the transition
matrix, as defined in [15, Section IlI-A]. After straightforward
manipulations, we find

Fig. 4. Radiation patterfiEy| and|Ey| versusf in the ¢ = /2 plane for
M _ . -1 M three different orientatiog; (¢4 = 7/2) of the biasing magnetic fielHl;.
L Pulr - [Paulr H, r The source is a Hertzian dipole of unit moment oriented in akgirection
_|_([P12]F — [P11]F . [P21]El . [PQQ]F) . Hin—l' and placed on top of a two-layered grounded dielectric-ferrite slabs with the
’ following characteristics: freq: 17 GH2,; = 0.762 mm, hy = 1.524 mm,
(29) €. =129, €0 = 15.1, poHo = 0.032 T, poM, = 0.16 T. Solid lines:
our data; symbols: data of [18] and [25].
Now substituting in (29) the expressions given in (26) and
(27), the transverse spectral magnetic Green’s dyadic is finally

written as IEHI

Ggy = [Pulr- [Palp' - Gaum
+([P1o]r — [Pulr - [Palp' - [Paolr) - Gl
(30)

which completes the computation of the transverse electric
field according to (25).

I1l. NUMERICAL EXAMPLES: RADIATION CHARACTERISTICS
OF HERTZIAN DIPOLES OFARBITRARY ORIENTATION
EMBEDDED IN COMPLEX LAYERED MEDIA

Following the method described in Section Il, we have
developed a numerical code for computing the radiation char- _
acteristic_s of Hertzian _eleptric ar_ldlor magnetic dipoles em- 20 50 50 o 30 80 %0
bedded in a layered bianisotropic medium. For comparison a(d ]
purposes, the far field was also calculated from the spectral- (degrees
domain transverse electric fields in the air interface using thg. 5. E, far-field amplitude versu$ in the » = 0 plane for different
stationary phase technique [19, eq. 4.17(a)]. The spectr%tl?m_atlioé!sl‘ﬁdip_) of %n electric gipo'q’ located 1a(§ the top of a %OrndE‘d

: : - . jaxial dielectric substrate with,, = €,y = Teg, €22 = Adeq,
domain transverse electric fields at the air interface We)fB: 1 mm, and its optical axis oriented With. = 20°, gax = 0°, freq =
obtained following the EBM procedure described above. 30 GHz. Solid lines: our data; symbols: data of [13].

First of all, we have checked our numerical results with
previously published data. An initial comparison is made . . . . _ .
with the results presented in [18] and [25] for the radiatiof‘\rt_)'tr‘f’mIy _onentgd dipolegai, = 0, 9“?1’) on a_lgroyndeq t||t§d
patterns of a Hertzian dipole of unit moment orientated in tﬁgnaxml dielectric substrate (the optical axis orientation is set
x-direction and placed at the top interface of a tWo-IayeréS 20°). When the dipole is placed either tangential or normal
grounded dielectric-ferrite slabs. As can be seen in Fig. 4, d@rthe interfaces, our data fits properly to those shown in [13,
data for this tangential dipole show an excellent agreemdrig- 2].
with those reported in [18] and [25]. A second example is In addition to these figures, and to show the possibilities
shown in Fig. 5 for thels relative far-field amplitude of an of this method, we present new results for thg and £
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IV. CONCLUSIONS

We have shown a systematic method for computing the
CSGD for layered bianisotropic planar structures. The method
makes use of the ability to express the sheets of normally
directed current densities in terms of equivalent sheets of
magnetic/electric-current densities parallel to the interfaces.
Once the original electric sources have been entirely expressed
in terms of transverse magnetic-/electric-current sheets, any of
the methods used for computing the TSGD can be applied
to obtain the electric and magnetic fields. In this paper, the
above computation has been carried out extending the EBM
to compute the corresponding transverse electric fields due to
both transverse electric and magnetic surface current densities.
The complete spectral electric Green’s dyadic can finally be
. obtained after algebraically calculating the normal component
50 B0 a8 b 0 B0 B of the electric field from its transverse components. For the

B{degreas) case of magpetic currents, the gomplete speptral magnetic
Green’s dyadic can be easily obtained by applying the proper
(@) duality relations.

This method has also been applied to the computation of the
far-field characteristics of arbitrarily oriented Hertzian dipoles
embedded in complex layered media.

[Eg

|E,l

APPENDIX

The transverse electric spectral Green’s dy&#ie; in (25)
is defined as the dyadic relating the transverse electric field
E, r atthe field interfacé’ when a transverse sheet of surface
electric-current density

/s | | I5 = Jo, 1y ¢ kot g Ikat et (31)

is placed at the source interfaseof an bianisotropic layered
medium bounded by top and bottom interfaces which can
be electric walls, magnetic walls, or any kind of impedance
boundary conditions (IBC's)Gg; can be obtained from
-90 -60 -30 0 30 60 20 [15, eq. (5)], with (1, 2,---) replaced by(S, F') and also
o(degrees) considering that, » = J, » = 0 since there is not surface
©) current at the field interface. Therefore, we have

Fig. 6. Radiation patterfiEy| and |E,| versusé in the ¢ = n/2 plane 0= [L]FS “E s+ [L]SS "Eq p (32)

for different orientation {4;,) of an electric dipolep located at the top ) o

of a three-layered grounded structure characterized by: (layer one, uniasidnere E, s is the transverse electric field at the source
?'electr'C) h1t_ =d1f m_:n,y fr T = 10.7501}6? =V[10~460(:J §|gy$f interface and thgL];; matrices are obtained following the
wo, magnetized ferritefio = 1 mm, ¢, » = 15.1, oM, = 0. , ; ; ;

joHo = 0.032 T, 64 = 7/2, ou = 7/4; (layer three, isotropic chiral "€CUrrence algorithm given |n.[15, egs. (7)-(24)], with= 1,
layer),hz =1 mm, e, 3 =4, pt,.3 =1, & = —nr = jO.5. F =2 andK = 1, 2. According to [15, egs. (5) and (32)],

we can write

relative far-field amplitudes of an arbitrarily oriented dipole J? = ([Llsr — [Llss - [Ll75 - [Llrr) - Er r - (33)
on the top of a three-layered grounded structure comprising an. i P
uniaxial tilted dielectric, magnetized ferrite, and chiral laye¥/Nich leads to the following expression {6 .

The results for several different dipole orientation are shown in Grr = (Llerm — Mlee - LIZL - (L -1 34
Fig. 6(a) and (b). We have normalized the values of the ampli- #1 = ([Lsp = [Llss - [Llps - [Llrr) (34)
tude of E,, and E in such a way that| E¢|max )/ (| E¢|max) = As is explained in [15], thdL];; matrices are expressed

0.11. On the one hand, these figures show the important terms of certain[g]; ; and [g*]; ; matrices related to a
numerical variation of th&’ far-field amplitude with respect single-layer problem. Explicit expressions for these matrices
to 64, and, on the other hand, the significant qualitativehen both the upper and bottom interfaces are assumed to
changes of thel, relative far-field amplitude as the dipolebe a perfect electric wall (PEW) can be found in [15, sec.
orientation varies (especially the change of its symmettil-A, egs. (31)—(34)]. For other types of boundary conditions,
properties). only slight changes in thig®]; ; definitions corresponding to
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the upper/lower interface have to be introduced. The complgie]
expressions for the usual case of perfect magnetic wall (PMW),
PEW, and any kind of interface suitable for implementatiop
by means of IBC's are:

* PEW at the lower interface (= 0) [13]

[g7] 1 = —[7]- ([Rea] - [Rasly) (39) "

* PEW at the upper interfacé & N)
[g*Iv-1,v-1 = [T]- ([Pr2]i" - [Pualn)  (36) 115

« PMW at the lower interfacei (= 0)
[g 1,1 = (1] (Reo] " - [Raa]1) B7) g

« PMW at the upper interface & N)
[ In—1,v—1 = 1] ([P22]y" - [P21]w) (38) o

[18]
¢ IBC at the lower interface:(= 0) This case can be treated
considering a layer below the open interface with

[&7]o,0 = —[T]-[Z] (39)

« IBC at the upper interface & N) We can now consider
a layer above theé = N interface with

[g* v, ~ =17 [2].

For the remainingg];; matrices, the expressions in [15,[22]
egs. (31)—(34)] still holds. ThéZ'] and [R;;] matrices are [23]
defined in [15] and, for the usual case of free-space boundary
conditions, thd.Z]-matrix must be replaced by the well-known[24]
free-space transverse impedance matrix.

[19]

[20]

[21]
(40)

[25]
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