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Abstract—This paper shows how to obtain a systematic al-
gorithm for computing the complete spectral Green’s dyadic
(CSGD) of multilayered bianisotropic planar structures. The
top and bottom boundary conditions of the structures can be
either electric/magnetic walls or any kind of boundary condition
suitable for implementation by means of impedance/admittance
dyadics. The method presented here makes use of the fact that
the sheets of normally directed surface electric-/magnetic-current
density can be transformed into equivalent sheets of transverse
electric-/magnetic-current density. Once the problem has been
reduced to deal only with transverse current densities, the equiv-
alent boundary method (EBM) is extended to obtain the CSGD.
This method has been applied to compute the radiation char-
acteristics of arbitrarily oriented dipoles embedded in different
layered structures.

Index Terms—Arbitrarily oriented dipoles, bianisotropic lay-
ered media, dyadic Green’s function.

I. INTRODUCTION

T HE analysis of the electromagnetic field created by
sources or scattered by metallic patches or strips

embedded in stratified planar media finds application in
many different fields such as geophysical investigations,
remote sensing, optoelectronics, microwave circuitry, and
antennas. Often, anisotropy is unavoidable in one or more
layers of the planar microwave circuits, but in other cases,
anisotropic and/or chiral layers are included in planar circuits
to improve performance [1], [2]. Magnetic anisotropy can
be found in ferrites or may be induced by means of a
biasing static magnetic field, thus providing an external
parameter to control some characteristics of the circuit and/or
the radiation properties of planar antennas [3]–[5]. Also,
composite chiral–ferrite media [6] and uniaxial bianisotropic
media [7] have been proposed to exploit the electromagnetic
properties of these materials. Both the isotropic and all the
above cases are particular cases of the most general linear
medium, i.e., the bianisotropic medium whose constitutive
parameters are dyadics.

The rigorous analysis of planar structures in layered me-
dia by the method of moments requires the computation
of the dyadic Green’s function [8]–[11]. This computation
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can first be carried out in the spectral domain, where it
is possible to obtain closed-form expressions for isotropic
structures, and then transforming these to the spatial domain
[11]. If anisotropic layers are present, the computation of the
spectral Green’s dyadic becomes more involved and, in the
general bianisotropic case, only a numerical approach can
be resorted to. In many problems—e.g., when computing the
characteristics of planar circuits—we only need to obtain the
transverseGreen’s dyadic, which relates current sources and
field components both parallel to the interfaces of the medium
(the plane of these interfaces will be termedtransverse).
Numerical procedures for the computation of the transverse
spectral Green’s dyadic (TSGD) in layered anisotropic media
are reported, e.g., in [12]–[15]. Nevertheless, there are also
manyplanarstructures where the presence of feeding elements
breaks the planar condition, making the determination of the
complete spectral Green’s dyadic (CSGD) unavoidable [16].

One possible way to compute this CSGD is to transform
normally directed components of the sources (either electric
or magnetic) into equivalent sheets of transverse-surface cur-
rent density [17]. This procedure enables the application of
any of the methods involving only transverse components
[12]–[15] to the direct computation of the CSGD. Both the
transformations and the general scheme to find the equivalent
sources when the sheets of normally directed current are
embedded in isotropic media can be found in [17]. In this
paper, we will extend this scheme to obtain general expres-
sions for the corresponding transformations when normally
directed electric/magnetic currents are embedded in general
bianisotropic media.

Once the above transformations are performed, the equiv-
alent boundary method (EBM) [14], [15] may be chosen to
compute the CSGD, although other suitable choices are also
possible (e.g., [12], [13]). The EBM, proposed by the authors
in [14] and [15], is a different approach for systematically
computing the TSGD in striplines and/or patches embedded
in layered bianisotropic media and provides an straightforward
algorithm[15] to obtain the transverse components of the elec-
tric fields when transverse-surface electric currents are present
at some of the interfaces of the layered linear bianisotropic
medium. As was discussed in [15], some of the features of
the EBM are: 1) the conceptual reduction of the multilayered
problem to certain interrelated one-layer problems, 2) the
reducedsize (2 2) of the basic matrices associated with
these one-layer problems, which are the elementary blocks of
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the complete algorithm; and 3) the well-conditioned nature of
the algorithm, which provides satisfactory numerical behavior
for large values of the transverse wave vector (the wave-vector
components parallel to the interfaces) and high numbers of
layers [18].

Since, to the authors’ knowledge, there has not been a
method reported to compute the complete electric and mag-
netic spectral Green’s dyadic for layered bianisotropic media,
this paper will present a systematic and general scheme to
compute the CSGD in bianisotropic media based, first, on
the transformation of sheets of normally directed current
into equivalent transverse current sheets and, second, on
the application of the EBM algorithms. As is well known,
obtaining this CSGD is equivalent to calculate the radiation
characteristics of an arbitrarily oriented Hertzian dipole [19].
This computation was accomplished in [20] for an isotropic
single-layer planar structure via a TE and TM modal decom-
position and in [13] and [21] for layered anisotropic structures
by a transverse transition matrix method. In this paper, and
as an application of our method, we will show some results
of the radiation characteristics of arbitrarily oriented Hertzian
dipoles embedded in complex layered media.

II. A NALYSIS

The extension of any of the methods proposed in [12]–[15]
for the computation of the fields produced by three-
dimensional (3-D) sources embedded in a general bianisotropic
layered medium creates some difficulties since these methods
were originally developed to deal only with transverse-
surface electric currents and transverse fields. It should be
noted that the latter case is relatively simple because the
transverse-surface electric-current densities can be treated as
discontinuities of the transverse magnetic fields, and then
the problem can be completely solved in terms of just
the transverse components. Nevertheless, we can still take
advantage of the transverse nature of the above methods by
splitting the contribution of the 3-D sources into transverse
and normal contributions. Moreover, following a method
similar to that reported in [17] for the isotropic case, it
will be shown that the normally directed currents embedded
in bianisotropic layers can be transformed (in the spectral
domain) into equivalent sheets of transverse magnetic- and/or
electric-current densities by deriving the field singularities
at the location of the dipole sources. In this way, once the
transverse fields produced by both the actual and equivalent
transverse sources have been obtained, the normal components
of the fields can be algebraically computed in terms of the
transverse components. The computation of the transverse
fields produced by equivalent transverse magnetic sources
can be accomplished following the algorithms reported in
[12]–[15] for the electric case after applying the duality
relationships between electric and magnetic fields [22, pp.
98–100]. The same duality relations can also be used to obtain
the fields of original elementary magnetic-current sources. The
remainder of this section is organized as follows. Section II-A
will show how to obtain the equivalent transverse sources of
a 3-D source inside a bianisotropic layer. In Section II-B, the

Fig. 1. Sheet of arrayed vertical electric dipoles inside an homogeneous
bianisotropic layer.

EBM [15] is employed to give the outlines of the systematic
computation of the complete Green’s dyadic in the spectral
domain. Finally, and as an example of application, Section II-
C shows how to obtain the spectral Green’s dyadic relating the
electric field and current in a layered grounded bianisotropic
medium.

A. Computation of the Equivalent-Current Sheets

Starting from the method developed in [17, pp. 17–23] for
the isotropic case, we will obtain the transverse electric- and/or
magnetic-current sheets equivalent to a planar sheet of arrayed
vertical electric dipoles inside a general bianisotropic layer
(see Fig. 1). Specifically, we will consider a normally directed
surface electric-current sheet density given by

(1)

where is the -coordinate of the current sheet, and
are the transverse components of the wave vector, andis the
unit vector perpendicular to the interfaces (in the following,
the exponentials will be suppressed). This sheet of normally
directed current density is placed in a medium characterized
by the following bianisotropic and linear constitutive relations
[23]:

(2)

(3)

where , and are the relative dyadic permit-
tivity and permeability, and and are the cross-coupling
dyadics accounting for the bianisotropy of the substrate.

Following [17], we can consider the surface-density current
(1) as the limiting case of a finite sheet of normally directed
volume-density current of thickness as
approaches zero (see Fig. 2). Owing to the charge-conservation
principle, a surface-free charge density given by

(4)

will appear at both bounds of this current sheet.
Since in the limit as approaches zero some of the fields

inside the source region will approach infinity, these fields
will determine the field discontinuities across the surface on
which the current sheet (1) is placed. Once these predominant
fields have been obtained, the sheet of normally directed
surface current density will be reduced to anequivalentsheet
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Fig. 2. Finite vertical current sheet inside an homogeneous bianisotropic
layer. This sheet turns into the dipole sheet of Fig. 1 ash ! 0.

of transverse magnetic and/or electric surface current density
giving the same field discontinuities [17, p. 23].

As we are interested only in the behavior of the fields in
the source region of the normally directed current sheet in the
limit , these predominant fields are obtained neglecting
both variations inside this sheet and the external fields (which
should remain finite even in the limit [17]). Then, from
the continuity conditions at the upper and lower surface charge
layers of Fig. 2, it is deduced that inside the source region
as : , (subscript stands for the
transverse part of the corresponding vectors) and .
In the same way, the-component of the displacement vector
must satisfy , with given by (4). Finally, from

, and the constitutive relations (2) and
(3), in the limit as approaches zero, the following equations
for and in the bianisotropic case are obtained:

(5)

(6)

These equations, together with (4) and
, provide the following direct expressions for the dom-

inant fields:

(7)

(8)

(9)

(10)

(11)

where and are, respectively, the unit vectors along the-
and -directions.

If we now proceed along the treatment given in [17, pp.
21–23], starting from

(12)

making use of the integration contour shown in Fig. 1 and
taking into account the discontinuity produced in the external
(finite) fields of the current sheet shown in Fig. 1 by the infinite

fields given in (7)–(11), we obtain

(13)

where and are the -components of the electric
fields at positions one and two in Fig. 1 and and the
transverse electric fields just above and below the interface

. From the above equation, in the limit as points one
and two coalesce ( ), we can
write

(14)

with being the transverse gradient operator. Now taking
into account the transverse dependence of the fields [see (1)],
(14) can be written as

(15)

where .
Therefore, the discontinuity produced in by the sheets

of infinite fields (7)–(11) is equivalent to a sheet of surface
magnetic-current density given by

(16)

(17)

Similarly, we find that

(18)

where is an equivalent sheet of surface electric-current
density given by

(19)

Explicit expressions for the above equivalent magnetic and
electric currents can be obtained after substituting (8)–(11)
into (17) and (19).

From relations (7)–(19), it is apparent that the fields pro-
duced by a sheet of arbitrarily directed electric surface current
density

(20)

with amplitude ( , with
) are the same than those obtained from the following

equivalentsheets of surface electric and magnetic currents at
:

(21)

(22)

where and are given by (17) and (19).
It is interesting to note that for the nonchiral case (when

and ), the equivalent surface current sheets can
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be expressed as

(23)

(24)

These latter results coincide with those obtained by Tsalamen-
gas [21, eq. (17)] following a quite different method.

The corresponding expressions for the equivalent-surface
current sheets of an arbitrarily oriented magnetic source similar
to (20) can be obtained from the above equations after applying
the duality relations [22, pp. 98–100].

B. Computation of Fields: Outline of the General Procedure

Once the transformation of the original electric-current
sheet (20) into equivalent electric and magnetic transverse
current sheets has been performed, the fields can be computed
following some of the known methods for obtaining the
TSGD [12]–[15]. Since the explicit and detailed description
of a general algorithm to compute the fields would be rather
cumbersome, in this section, we will only give an outline
of the general procedure. As was mentioned above, among
the possible methods for obtaining the TSGD starting from
transverse sources as defined in (21) and (22), the EBM will
be used in the following.

Although the direct application of the EBM algorithms in
[14] and/or [15] only provides the transverse electric field

produced by the source in (21), the field created
by the magnetic source (22) can be readily obtained
making use of the duality relations [22] together with the
corresponding dual-boundary conditions (for instance, electric
wall magnetic wall and vice versa). If we now were
interested in computing the transverse electric field, this
can be readily obtained from the values of at two different
levels inside each layer (for example, at the upper and lower
interfaces of each layer). Finally, the total electric and/or
magnetic field created by both equivalent sources (21) and
(22) is obtained by superposition.

After the expressions to compute the transverse fields pro-
duced by an electric-current source (20) have been obtained,
the duality relations can again be used to obtain the transverse
fields produced by a magnetic-current source of a similar
type to (20). The remaining and fields can finally be
computed from the relations between these-components and

, . These relations are algebraic in the spectral domain
and are obtained from (2), (3), and the Maxwell equations
in each particular case (explicit expressions for the normally
directed fields can be found, for example, in [24]). Obviously,
each element of the CSGD can now be obtained as the relation
between the corresponding components of fields and sources.

C. Example: Computation of the Transverse Electric Field
Created by an Electric-Current Source Inside a
Layered Bianisotropic Grounded Medium

As an example, we will explicitly compute the transverse
electric field produced by an arbitrarily oriented electric-
current sheet as in (20) embedded in a layered bianisotropic

Fig. 3. Arbitrarily oriented phased dipole sheet inside a multilayered bian-
isotropic grounded structure.

grounded medium as that shown in Fig. 3. We will suppose
that the bottom interface of the structure is an electric wall
and that the upper interface bounds to free space, although
the procedure would work equivalently with other boundary
conditions. The source interface ( ) will be denoted by
subscript (uppercase) and the interface where the fields are
to be calculated by subscript . According to the scheme
shown in the above subsection, the transverse field can
be written as

(25)

where , , and are given by (17), (19), and (21),
and , are the transverse spectral dyadics relating the
transverse electric field to the electric and magnetic sources,
respectively.

The transverse Green’s dyadic can be obtained by
a direct application of the EBM algorithm, as presented in
[15], although, for completeness, an outline of the method
for this particular configuration is provided in the Appendix.
The computation of the transverse Green’s dyadic
can be carried out by starting from the transverse electric
Green’s dyadic of the dual configuration . This dual
configuration results from replacing the lower electric wall
by a lower magnetic wall, the free-space impedance by its
dual impedance, and each layer constitutive tensors by their
duals. The dual electric Green’s dyadic actually provides the
transverse magnetic field created by the equivalent
magnetic source (17) according to or
equivalently, ( )

(26)

The transverse electric field created by the equivalent magnetic
source (17) at the field interface can be computed
by making use of the uniqueness theorem for linear media,
which ensures that all the field components inside a region
without sources are determined by the tangential components
of the magnetic field on the boundaries. In particular, we
can determine the transverse electric field at the interface
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, from the transverse magnetic field at this interface
and at any other interface, provided that there are no sources
between them. In this specific configuration, we will choose
the interface as the other reference interface (although
other choices are possible) and then we can write

(27)

Once and have been calculated, we can obtain
from

(28)

where the are the (2 2) submatrices of the transition
matrix, as defined in [15, Section III-A]. After straightforward
manipulations, we find

(29)

Now substituting in (29) the expressions given in (26) and
(27), the transverse spectral magnetic Green’s dyadic is finally
written as

(30)

which completes the computation of the transverse electric
field according to (25).

III. N UMERICAL EXAMPLES: RADIATION CHARACTERISTICS

OF HERTZIAN DIPOLES OFARBITRARY ORIENTATION

EMBEDDED IN COMPLEX LAYERED MEDIA

Following the method described in Section II, we have
developed a numerical code for computing the radiation char-
acteristics of Hertzian electric and/or magnetic dipoles em-
bedded in a layered bianisotropic medium. For comparison
purposes, the far field was also calculated from the spectral-
domain transverse electric fields in the air interface using the
stationary phase technique [19, eq. 4.17(a)]. The spectral-
domain transverse electric fields at the air interface were
obtained following the EBM procedure described above.

First of all, we have checked our numerical results with
previously published data. An initial comparison is made
with the results presented in [18] and [25] for the radiation
patterns of a Hertzian dipole of unit moment orientated in the

-direction and placed at the top interface of a two-layered
grounded dielectric-ferrite slabs. As can be seen in Fig. 4, our
data for this tangential dipole show an excellent agreement
with those reported in [18] and [25]. A second example is
shown in Fig. 5 for the relative far-field amplitude of an

Fig. 4. Radiation patternjE�j and jE�j versus� in the� = �=2 plane for
three different orientation�H (�H = �=2) of the biasing magnetic fieldH0.
The source is a Hertzian dipole of unit moment oriented in thex-direction
and placed on top of a two-layered grounded dielectric-ferrite slabs with the
following characteristics: freq: 17 GHz,h1 = 0:762 mm, h2 = 1:524 mm,
�r; 1 = 12:9, �r; 2 = 15:1, �0H0 = 0:032 T, �0Ms = 0:16 T. Solid lines:
our data; symbols: data of [18] and [25].

Fig. 5. E� far-field amplitude versus� in the ' = 0 plane for different
orientations (�dip) of an electric dipolep located at the top of a grounded
uniaxial dielectric substrate with�xx = �yy = 10:7�0, �zz = 10:4�0,
h = 1 mm, and its optical axis oriented with�ax = 20�; 'ax = 0�, freq=
30 GHz. Solid lines: our data; symbols: data of [13].

arbitrarily oriented dipole ( ) on a grounded tilted
uniaxial dielectric substrate (the optical axis orientation is set
to 20 ). When the dipole is placed either tangential or normal
to the interfaces, our data fits properly to those shown in [13,
Fig. 2].

In addition to these figures, and to show the possibilities
of this method, we present new results for the and
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(a)

(b)

Fig. 6. Radiation patternjE�j and jE�j versus� in the � = �=2 plane
for different orientation (�dip) of an electric dipolep located at the top
of a three-layered grounded structure characterized by: (layer one, uniaxial
dielectric) h1 = 1 mm, �xx = �zz = 10:7�0; �yy = 10:4�0; (layer
two, magnetized ferrite)h2 = 1 mm, �r; 2 = 15:1, �0Ms = 0:16 T,
�0H0 = 0:032 T, �H = �=2; 'H = �=4; (layer three, isotropic chiral
layer),h3 = 1 mm, �r; 3 = 4, �r; 3 = 1; �r = ��r = j0:5.

relative far-field amplitudes of an arbitrarily oriented dipole
on the top of a three-layered grounded structure comprising an
uniaxial tilted dielectric, magnetized ferrite, and chiral layer.
The results for several different dipole orientation are shown in
Fig. 6(a) and (b). We have normalized the values of the ampli-
tude of and in such a way that

. On the one hand, these figures show the important
numerical variation of the far-field amplitude with respect
to and, on the other hand, the significant qualitative
changes of the relative far-field amplitude as the dipole
orientation varies (especially the change of its symmetry
properties).

IV. CONCLUSIONS

We have shown a systematic method for computing the
CSGD for layered bianisotropic planar structures. The method
makes use of the ability to express the sheets of normally
directed current densities in terms of equivalent sheets of
magnetic/electric-current densities parallel to the interfaces.
Once the original electric sources have been entirely expressed
in terms of transverse magnetic-/electric-current sheets, any of
the methods used for computing the TSGD can be applied
to obtain the electric and magnetic fields. In this paper, the
above computation has been carried out extending the EBM
to compute the corresponding transverse electric fields due to
both transverse electric and magnetic surface current densities.
The complete spectral electric Green’s dyadic can finally be
obtained after algebraically calculating the normal component
of the electric field from its transverse components. For the
case of magnetic currents, the complete spectral magnetic
Green’s dyadic can be easily obtained by applying the proper
duality relations.

This method has also been applied to the computation of the
far-field characteristics of arbitrarily oriented Hertzian dipoles
embedded in complex layered media.

APPENDIX

The transverse electric spectral Green’s dyadic in (25)
is defined as the dyadic relating the transverse electric field

at the field interface when a transverse sheet of surface
electric-current density

(31)

is placed at the source interfaceof an bianisotropic layered
medium bounded by top and bottom interfaces which can
be electric walls, magnetic walls, or any kind of impedance
boundary conditions (IBC’s). can be obtained from
[15, eq. (5)], with (1, 2, ) replaced by and also
considering that since there is not surface
current at the field interface. Therefore, we have

(32)

where is the transverse electric field at the source
interface and the matrices are obtained following the
recurrence algorithm given in [15, eqs. (7)–(24)], with ,

, and . According to [15, eqs. (5) and (32)],
we can write

(33)

which leads to the following expression for :

(34)

As is explained in [15], the matrices are expressed
in terms of certain and matrices related to a
single-layer problem. Explicit expressions for these matrices
when both the upper and bottom interfaces are assumed to
be a perfect electric wall (PEW) can be found in [15, sec.
III-A, eqs. (31)–(34)]. For other types of boundary conditions,
only slight changes in the definitions corresponding to
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the upper/lower interface have to be introduced. The complete
expressions for the usual case of perfect magnetic wall (PMW),
PEW, and any kind of interface suitable for implementation
by means of IBC’s are:

• PEW at the lower interface ( )

(35)

• PEW at the upper interface ( )

(36)

• PMW at the lower interface ( )

(37)

• PMW at the upper interface ( )

(38)

• IBC at the lower interface ( ) This case can be treated
considering a layer below the open interface with

(39)

• IBC at the upper interface ( ) We can now consider
a layer above the interface with

(40)

For the remaining matrices, the expressions in [15,
eqs. (31)–(34)] still holds. The and matrices are
defined in [15] and, for the usual case of free-space boundary
conditions, the -matrix must be replaced by the well-known
free-space transverse impedance matrix.
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